Sunday, August 23, 2009

Self-Organization and Conway's Game of life (With Interactive Javascript Canvas)

Introduction

I want to show you that self-organization is the magic of life. Conway's game of life defines a simple universe governed by 3 simple laws in which creative, intelligent and stable organism emerge and die.


Conway's Game of Life in Javascript


Generate Big bang!






Note:
You can also paint on the canvas using the mouse.

Supported browsers are Safari 2.0+, Opera 9.0+, Firefox 1.5+ and Chrome. Use Safari or Chrome for a much better experience. Internet Explorer does not support this technology yet.


Explanation

The universe of the game is a two-dimensional grid of cells. Each cell can be either dead or alive. Each cell interacts with it's 8 direct neighbors in the following way:

1. Birth. Any dead cell with exactly 3 live neighbors becomes live.
2. Survival. Any live cell with exactly 2 or 3 live neighbors survives.
3. Death. Any live cell with less than 2 or more than 3 neighbors dies.

The behaviors that emerge from these simple rules may be considered creative and beautiful.


Take away

Here's a quote from a simpler way by Margaret J. Wheatley.

The tendency to organize is not just found in living beings. While it is increasingly difficult in science to distinguish the living from the non-living, few of us would categorize light bulbs as alive. Yet light bulbs have exhibited a breathtaking tendency to self-organize when wired together with other bulbs. Building on earlier work, theoretical biologist Stuart Kauffman conducted a light bulb experiment in the 1960s.

ToadKauffman was interested in exploring how the complex network of human genes had developed, but he used light bulbs to demonstrate that self-organization is a fundamental process found everywhere. He wired together a network of two hundred light bulbs. Each bulb was assigned a relationship with two other bulbs. It was to turn on or off based only on the behavior of either of its two assigned partners. Even with such simple conditions, the number of possible states of on and off bulbs is 1030. The human imagination cannot begin to comprehend this number of possibilities. [...]

But the pattern of organization appeared instantly. After exploring only thirteen states, the system of bulbs settled into a repeatable pattern, flashing on and off in a repetitive cycle of four configuration. [...]

GliderWe live in a universe which seeks organization. When simple relationships are created, patterns of organization emerge. Networks, living or not, have the capacity to self-organize. Global order arises from local connections. It was these cooperative structures that first created life. Life linked with other life and discovered how to continue discovering itself. [...]

To me this explains how life can emerge from the inanimate.